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Abstract 
 
At present, there are already many global efforts to improve food security, including those that seek to 
increase crop productivity of small farmers through providing better crop varieties. Wheat is an 
important source of food intake for many communities, especially in developing countries. Thus, the 
work of physiological improvement of wheat crop can contribute to accelerate genetic gains using new 
technologies. This study contributes to explore high throughput phenotyping methodologies, with 
estimations of plant height and biomass above ground in wheat were obtained using high resolution 
aerial images from unmanned aerial vehicles in an experimental field in Sonora, Mexico. Two different 
image resolutions (0.5 cm and two cm), and two different methods of georeferencing the digital three-
dimensional model were evaluated (using ground control points and geotagging of images during image-
acquisition with differential correction on the UAV navigation system). 
The study confirms promising results in the estimation of plant height (correlations between 0.52 to 
0.87) and above-ground biomass (correlations from -0.01 in booting to 0.40 in anthesis stage). The direct 
georeferencing method using the differential correction has been identified to be the better option, 
especially, because it is saving time and costs in the data collection process, while providing enough 
accuracy. The overall image resolution was two cm, but not with great and consistent differences. 
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1. Introduction 
 
There are many global efforts aligned to the United Nations’ second goal of the sustainable development 
goals for 2030: “End hunger, achieve food security and improved nutrition and promote sustainable 
agriculture” (UN, 2015, p. 15). Wheat (Triticum spp) is the cereal with major consumption worldwide 
(FAO, 2018), an important source of food for humanity. However, its production faces environmental 
and social challenges that mostly affects small-scale farmers, e.g. unfavorable weather conditions that 
threaten to lower yield (FAO, 2018). To support small-scale farmers’ productivity, international crop 
improvement centers are developing improved varieties, i.e. high-yielding in unfavorable conditions.  
Physiological wheat breeding characterizes the genetic resources available to make crosses based on 
known desirable characteristics to pass them to the next generations. Breeding cycles are accelerated 
through pre-selection of varieties with desirable traits based on “genomic selection” models involving 
genotyping and phenotyping. With sufficient information, lines don’t need to be evaluated in the field 
before being selected as parents for the next cycle (Heffner, Sorrells, & Jannink, 2009). Extensive in-field 
measurements in experimental plots are required, associated to high costs in manual labor and time.  
Two traits of interest are plant height (PH) and dry above ground biomass (AGB) in wheat. PH is useful 
for assessing susceptibility of lodging (Berry, Sterling, Baker, Spink, & Sparkes, 2003), to evaluate 
varieties under water stress and can be a proxy measure for flowering (Madec et al., 2017). PH is also 
correlated with yield and the plant carbohydrate storage capacity (Pask et al., 2012). Biomass is an 
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indicator of crop growth, radiation use efficiency and nutrients and metabolite analysis. Better adapted 
genotypes are able to maintain biomass production during stress conditions (Pask et al., 2012).  
Technology now allows efficient data capture: PH and AGB of wheat and other crops have been 
estimated with true color imagery (Walter, Edward, McDonald, & Kuchel, 2018; Bendig, Bolten & Bareth, 
2013) and combinations of sensors (Geipel, Link, & Claupein, 2014). Unmanned aerial vehicles (UAV) 
platforms are widely used for crop monitoring because of low cost, high versatility and advances in 
sensors (Bendig et al., 2013). 
Photogrammetry is a technique that allows to reconstruct 3D scenes from 2D images by stereoscopy. 
After the digital surface model (DSM) is created, the original pictures are projected and merged in it to 
produce an image free of distortions with uniform scale called orthomosaic. A digital terrain model 
(DTM) represents the bare soil of an area (Geipel et al., 2014). A crop surface model (CSM) represents 
the height of the objects above ground (Bendig et al., 2014). The DSM minus the DTM results in the CSM.  
The level of detail in the input imagery influences what scale of a phenomena can be seen (Madec et al., 
2017). This is related to the altitude and resolution of the camera. Cases of low correlations to ground 
truth measurements have been attributed to coarse resolution issues, however, very high resolution 
imagery is easier influenced by wind introducing noise to the model, especially when fewer images are 
available (Madec et al., 2017; Walter et al., 2018). A model quality increases when more photos are used 
(Walter et al., 2018), however, collecting more photographs also increases collection time, and 
consequently costs (Bendig et al., 2013). 
Additionally, accurate geolocation is needed to give the model its true location on earth. One classic 
technique to do it is by using ground control points (GCPs) in the field with known accurate location 
(Marshall et al., 2012). Alternatively, the model can be georeferenced directly during the 
photogrammetric process if the imagery is geotagged based on the UAV navigation system (Geipel et al., 
2014), with several meters of accuracy (De Souza et al., 2017). Precision enhancements of the mobile 
receiver in the UAV can be implemented using a base receiver on a known position (Madec et al., 2017) 
with the technique called Real Time Kinematic (RTK).  If direct georeferencing is used time and costs are 
saved during data capture and processing (Madec et al., 2017).  
The research questions in the study are (1) What is the correlation between manually measured PH 
compared to estimations obtained from a photogrammetric 3D model-reconstruction of wheat breeding 
experimental plots at key stages of the crop development? (2) What is the correlation between AGB 
compared to estimations of volume obtained from a photogrammetric 3D model-reconstruction of 
wheat breeding experimental plots at key stages of the crop development? (3) What is the optimal 
image resolution for the 3D model reconstruction of wheat breeding experimental plots for PH and 
volume estimations at key stages of the crop development? (4) What is the difference in spatial accuracy 
of RTK correction on the UAV location compared to the use of GCPs in the field to georeference the 
imagery products? 
 
2. Area of study 
 
This study was carried out in the Yaqui Valley, Sonora, Mexico, at the CENEB experimental station from 
the International Maize and Wheat Improvement Center (CIMMYT). The trial is located at 27.3955 N, 
109.9283 W. The Yaqui Valley is characterized by intensive irrigated agriculture. It shares its agroclimate 
with 40 percent of the land where wheat is grown in the developing countries. It has a semiarid climate 
with an annual average rainfall rate of 317 mm. 
 
 



         
 
 

Lorena González Pérez   UNIGIS América Latina            

3. Methodology 
 

3.1 DATA USED FOR THE STUDY 
The data corresponds to a wheat yield trial with 150 genotypes with 2 replicates for 2016-2017 winter 
cycle. The stages monitored were beginning of booting stage, seven days after anthesis and maturity. 
Plot size was four meters long by 2 beds of 0.8 m.  The PH was measured with a ruler vertically from the 
ground to the top of the spike in four plants per plot in 49 genotypes. AGB was cut from an area of 50 cm 
by two beds, dried and weighted from 149 genotypes. The UAV data was captured the same day or two 
days after or before field measurements. Unfortunately, the data for the PH at booting and several field 
plot measurements were unavailable. An extra measurement of PH was done on the eighth of March. 
Pearson’s correlation was used to assess the relationship between the remote and proximal data as done 
by Chapman et al. (2014). RMSE was used as an accuracy measure as done by Harwin & Lucieer (2012). 
Figure 1 shows a diagram of the steps followed in the study. 
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Figure 1. Methodology workflow 
 

3.2 IMAGERY ACQUISITION 
Two cm and 0.5 cm/pixel imagery were acquired in 13 flights trying to match the PH and AGB samplings. 
A fixed-wing UAV, eBee RTK by Sensefly, was used to acquire imagery of two cm/pixel with an RGB 
Canon PowerShot 110 camera with a perpendicular flightplan as De Souza et al. (2017). The lateral 
overlap was 80% and the longitudinal was 50%. A multirotor platform, Matrice 100 by DJI, was used to 
acquire imagery of 0.5 cm/pixel using the camera SONY NEX 5.  
The GCP or RTK correction were used to georeference. For the eBee, RTK correction was used. The RTK 
base equipment was a Trimble R4 GPS receiver (Trimble, Sunnyvale, CA, USA) fixed in a known location.  
Seven GCPs were placed in the field, distributed in the corners and randomly inside the trial. The GCPs 
were measured previously with the same equipment used for the RTK correction. To compare the 
methods, locations of the center of the GCPs marks in each image were compared to the original 
measured coordinates of the GCP, and residuals were used to calculate the RMSE (Harwin & Lucieer, 
2012). 

3.4 ESTIMATIONS OF PLANT HEIGHT AND VOLUME 
Photogrammetry software Pix4Dmapper (Version 4.4.4) was used to generate the DSM and the 
orthomosaic, then the CSM was calculated. The PH data per plot was extracted from the CSM as the 
99.5% percentile (Madec et al., 2017) inside an area where no AGB cut was done, avoiding 15 cm of 
border. To compute plot volume, each CSM pixel was multiplied by the pixel area, considering only the 
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ones corresponding to “vegetation pixels” in the orthomosaic filtered with the adapted greenness index 
filter (Wenzhu et al., 2015).  
 
4. Results 
 
Table 1 shows all the results from all the stages: R, RMSE, and number of ground vs estimate data pairs. 

Table 1. Results for all the methods comparison. 
4.1 ESTIMATION OF PLANT HEIGHT 

From the two-cm GCP imagery, the highest 
correlation is 0.87 for March eight. Anthesis stage 
showed an R = 0.55 and RMSE almost double than 
March eight. The best correlation for RTK imagery 
was in March eight (R = 0.85). The 0.5-cm imagery 
data for March eight showed the R = 0.57, R = 0.61 
for anthesis but R = -0.25 for maturity, but in that 
stage very few samples were used.  

4.2 ESTIMATION OF BIOMASS 
In the anthesis stage, an R between 0.29 and 0.4 was 
found across all methods; for maturity, R was in 
between 0.22 and 0.3. No correlation between the 
estimated volume and the AGB was found at booting 
for any resolution or georeferencing methods. For 
the two-cm GCP imagery, anthesis and maturity 
stage show a correlation of 0.29 and 0.3, 
respectively; they have a RMSE close to 0.4. The RTK 
imagery showed an R of 0.32 and 0.29 in the same 
stages. The 0.5-cm GCP imagery showed for anthesis 
an R = 0.4 and R = 0.22 for maturity. 

4.3 RESOLUTION AND GEOREFERENCING  
Comparing two-cm GCP versus two-cm RTK: 
accuracy in X was four times better with the GCP 

method, but for the Y component the difference was only 0.006. In anthesis and March eight, the GCP 
method showed a better correlation than the RTK (0.02 vs 0.03), but a higher RMSE (0.056 vs 0.079). 
Comparing two-cm GCP method and 0.5-cm GCP: RMSE in X was better for the 0.5-cm by 0.009, but 
worse in the Y component by 0.007. The 0.5-cm had a lower correlation and the RMSE was in the same 
range as the two-cm imagery. For PH, the results in the 3 methods follows the same trend for the stages, 
except for maturity for the 0.5-cm GCP. Figure 2 shows a profile comparing a sample of PH of the 
different methods, showing correspondence of trends between them. To the left, an issue in the 0.5 cm 
mosaic can be perceived as an unusual offset. 
For the AGB comparison, at booting, the higher correlation was 0.065 at the two-cm GCP, but the two-
cm RTK imagery presented the lower RMSE (0.143), while the 0.5-cm GCP presented the higher RMSE 
(0.512). For anthesis, the 0.5-cm GCP imagery showed the highest R (0.40) and the two-cm GCP for 
maturity (0.30). The RTK method and the 0.5-cm GCP presented more frequently higher RMSE than the 
two-cm GCP.  
 

Imagery Trait Stage R RMSE n 

0.5-cm GCP AGB Booting -0.01 0.512 222 

two-cm GCP AGB Booting 0.07 0.168 85 

two-cm RTK AGB Booting 0.04 0.143 85 

0.5-cm GCP AGB Anthesis 0.4 0.408 82 

two-cm GCP AGB Anthesis 0.29 0.488 80 

two-cm RTK AGB Anthesis 0.32 0.529 80 

0.5-cm GCP AGB Maturity 0.22 0.797 77 

two-cm GCP AGB Maturity 0.3 0.415 296 

two-cm RTK AGB Maturity 0.29 0.78 296 

0.5-cm GCP PH Anthesis 0.61 0.407 16 

two-cm GCP PH Anthesis 0.55 0.441 30 

two-cm RTK PH Anthesis 0.52 0.385 30 

0.5-cm GCP PH March 8 0.57 0.171 93 

two-cm GCP PH March 8 0.87 0.197 93 

two-cm RTK PH March 8 0.85 0.118 93 

0.5-cm GCP PH Maturity -0.25 0.148 19 

two-cm GCP PH Maturity 0.6 0.311 93 

two-cm RTK PH Maturity 0.68 0.177 93 
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Figure 2. Plant height profile comparison 

5. Discussion and conclusion 
This work focused in the estimation of PH and AGB in wheat experimental plots using photogrammetry 
based on aerial imagery acquired with UAV. The focus was in the comparison of two different spatial 
resolutions for the imagery, i.e. two and 0.5 centimeters, and two georeferencing methods, i.e. using 
GCP and direct georeferencing based on the geotagging of the imagery with RTK correction on the UAV. 
The highest correlations for PH were on March eight, when measurements where made all in the same 
day for all the sampling plots, giving a R from 0.57 to 0.85 for the different methods. Next remarkable 
stage was maturity (R = 0.6 and 0.68). The PH obtained from the CSM is underestimated compared to 
the manual measurements (De Souza et al., 2017), possibly related to limitations in photogrammetry to 
reconstruct the spikes in detail at the used image resolution (Madec et al., 2017). Comparing the 
indirectly estimated height (from UAV) to a directly measured one (with ruler) that can have low 
representativity of the crop (Bendig et al., 2014), due to very few samples taken, the method has great 
opportunities for improvement. An alternative to validate height estimated from UAV 3D models could 
be LIDAR terrestrial scanning. 
Correlation of AGB with volume are moderately low in all the datasets for maturity and anthesis (R 
between 0.29 and 0.40), but absent in booting. Previous studies showed lower correlations for individual 
stages compared to the use of all the growing cycle data (Madec et al., 2017). The method for calculating 
the volume can improve, which may lead to a better estimation of AGB. In Walter et al. (2018), higher 
correlations were found between estimated volume and AGB. A main issue may be that they used higher 
spatial resolution and more images per plot.  
Constrains in data quality and availability included measurements in windy conditions, low image 
overlap, uncertainty of the true fixed location of GCPs during the cycle, possible field measurement 
human errors in PH and AGB and missing ground truth data for some dates. 
Regarding the identification of the most suitable resolution and georeferencing method for the imagery 
to estimate PH and AGB, the two-cm GCP dataset presented in general the higher correlations and lower 
RMSE. All models had enough accuracy to match them to the true plot location (RMSE <0.086 m). The 
GCP method gave slightly better results than the RTK, but it requires more field work and user 
intervention in the processing. Regarding the best location accuracy by resolution in general, better 
estimations of PH were observed for the two-cm GCP model compared to the 0.5-cm GCP, but a 
definitive conclusion could not be drawn because the X and Y components of the RMSE results 
supported different methods. For AGB, moderately low correlations were observed for both resolutions 
with an R < 0.4. The minor differences between methods made it difficult to select an obvious best 
choice and further research with different resolutions is suggested to clarify the differences. PH 
estimations on wheat using high-resolution aerial imagery in an experimental field is possible and as well 
as AGB from anthesis onwards. 
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